

Water Security & Sustainability Lab Department of Environmental Sciences & Technology The Urban and Built Environment Ecology Lab Department of Environmental Science & Technology

Green Infrastructure and Ecosystem Services Assessment in Urban Environment

Leila Mosleh, Masoud Negahban-Azar, and Mitchell Pavao-Zuckerman

Department of Environmental Science and Technology, University of Maryland-College Park, MD, USA

Managing Water in Urban Areas

- Climate change
 - Increase risk of flooding
 - Water scarcity
- Urbanization
 - Urban population (U.S.): 82% (Central Intelligence Agency, 2017)
 - Urban development
 - Increase impervious surfaces
 - Increases the runoff volume and rate
 - Reduces groundwater recharge
 and evapotranspiration

https://www.arcsa.org/

Green Infrastructure (GI) as a solution

- Green Infrastructure
 - Economical, resilient tool to managing humid weather (EPA, 2018)
- Ecosystem Services
 - do not exist without demand by humans (Fisher et al., 2009)

Adapted from Vallecillo et al. (2018)

Green Infrastructure Ecosystem Services

- Primary
 - Flood control
 - Pollution reduction
 - Climate adaptation
 - Water harvesting
 - Groundwater recharge
- Secondary
 - Cultural services
 - Supporting services
 - ..
 - Lack of functionality Prevents appropriate ecosystem services provision

Risks to GIs

GI for increasing resilience for urban areas vs. GI resilience

Structure of the framework

Stage 1: Identifying the Gaps of previous frameworks

- Lack of attention to important categories such as maintenance in GI assessment
- Lack of detailed information for practical assessment
- Lack of integrating resilience concept into the assessment

Stage 2: Identifying the categories for GI assessment

- Five categories
 - Policy plans and strategies
 - System design and planning
 - Maintenance
 - Economic system
 - Community

A general procedure for GI resilience evaluation

A proper design could mainly absorb the disturbance

	Indicator	Resilience
		dimension
	GI type selection	Absorb
	GI location	Absorb
ning	Climate of region	Absorb
	Capacity	Absorb
lan	Biophysical	Absorb
P	component	
anc	Biodiversity	Absorb
sign á	Redundancy	Absorb
De:	Multi-functionality	Absorb, adapt
	Regenerative ability	Absorb, recover, adapt
	Failure identification	Recover, adapt
	Flexibility	Absorb

Appropriate policy could effectively help in absorb, recovery and adaptation

	Indicator	Resilience	
		dimension	Policy
	Defining policy	Absorb-recover-adapt	Plans and
6	Evaluation framework	Absorb	Strategies
ies	Periodically audit	Absorb	
teg	Maintenance	Absorb- recover-	Cl Sustam
tra		adapt	Grögstein
ទ	Define responsibilities and	Absorb	
pu	obligation for any person working		
s S	in the scope of GI		
an	Review and edit policy actively	Absorb-adapt	
P	Availability to users	Absorb	Lack of
<u>S</u>	Holistic approach to see urban	Absorb	appropriate
	ecosystem as a whole system		policies and regulations
0	Connection between long term	Adapt	
	and short term strategies		RISKS
	Connection between different	Absorb-recover-adapt	
	sectors		

Maintenance mostly help to absorb the risks and disturbances

	Indicator	Resilience dimension
	Existence of maintenance	Absorb,
	plan	recover, adapt
ce	Line blockage	Absorb
han	Sediment loading	Absorb
nte	Collecting trash	Absorb
Mai	Consider plants as dynamic system	Absorb
	Pollution build up	Absorb
	Soil compaction	Absorb

Community could be helpful for all dimension of GI resilience

	Indicator	Resilience dimension
nit)	Supply and demand of	Absorb, recover,
Commur	ecosystem services	adapt
	Society ecosystem services	Absorb
	demand inquiry	
Ŭ	Society awareness of SGI's	absorb, recover,
	benefits and conservation	adapt

Economic system is essential for absorb, recovery and adaptation of GI system

	Indicator	Resilience dimension
omic	City budget	Absorb, recover, adapt
con	Society budget	Absorb, recover, adapt
ш	(willingness to	
	spend)	

Summary –Next Step

- ✓ This framework could be helpful to evaluate the level of resilience in GIs
- ✓ Can direct the attention to:
 - ✓ The level of resilience in GI,
 - ✓ Identify categories with low resiliency,
 - \checkmark Help to improve the resilience
- ✓ Using stakeholders experience
- ✓ Applying this framework into case studies

Conclusion

- To maximize ES we need to identify how GI can respond to risks and disturbance (absorb, recover, adapt)
- To understand how to improve the aspects of the system that can absorb a disturbance
- In case of functionality loss- what aspects can help with recovery and adaptation

Thank You For Your Attention

Questions?

- Contact information: <u>Imosleh@umd.edu</u>, <u>mpzucker@umd.edu</u>
 - Website: <u>http://watersecuritylab.com/,</u> https://pavaozuckerman.wordpress.com/

The Urban and Built Environment Ecology Lab Department of Environmental Science & Technology

